Nat Commun | ºÎ°®±òÑо¿×é½ÒʾÔìѪ¸Éϸ°ûÆðÔ´µÄ±í¹ÛÒÅ..
2022Äê1ÔÂ17ÈÕ£¬±±¾©´óѧ·Ö×ÓҽѧÑо¿Ëù¡¢ÉúÃü¿ÆÑ§ÁªºÏÖÐÐĺΰ®±òÑо¿×éÔÚNatureCommunicationsÔÓÖ¾ÔÚÏß·¢±íÑо¿ÂÛÎÄ¡°pre-configuring chromatin architecture withhistone modifications guides hematopoietic stem cell formation in mouse embryos¡±£¬´Ó¿ç³ß¶ÈµÄȾɫÖÊÈýά½á¹¹¡¢×éµ°°×ÐÞÊμ°ÔìѪÏà¹Ø×ªÂ¼Òò×ÓRUNX1µÄ±í¹Ûµ÷¿ØÎ¬¶È£¬½ÒʾÁËHSCÆðÔ´µÄÃüÔ˾ö¶¨»úÖÆ¡£
ÔìѪ¸Éϸ°û£¨hematopoietic stem cell, HSC£©Î¬³ÖÕû¸öÔìѪϵͳµÄϸ°ûȺÌå×é³ÉÓ빦ÄÜ¡£ÄÚÆ¤-ÔìѪת»¯£¨endothelial-to-hematopoietictransition, EHT£©ÊÇHSCÖØÒªµÄÆðÔ´¹ý³Ì£ºÔÚ±³Ö÷¶¯ÂöµÄ¸¹²à£¬²¿·ÖÔçÆÚ¶¯ÂöÄÚÆ¤Ï¸°û£¨early arterialendothelial cell, eAEC£©ÌØ»¯ÎªÉúѪÄÚÆ¤Ï¸°û£¨hemogenic endothelial cells, HEC£©£¬²úÉúÔìѪ¸Éϸ°ûǰÌ壨pre-HSC£©£¬½ø¶ø³ÉÊì·¢ÓýΪ³¤ÆÚÔìѪ¸Éϸ°û£¨long-term hematopoietic stemcell, LT-HSC£©¡£ËäÈ»µ¥Ï¸°ûת¼×é·ÖÎö¼°¹¦ÄÜʵÑéÑéÖ¤ÆÊÎöÁË´ÓeAECÏòHSC·¢ÓýµÄ¶¯Ì¬¹ì¼£ÉϵIJ»Í¬Ï¸°ûȺÌå1, 2£¬µ«ÊÇ£¬HSCÆ×ϵÆðÔ´ºÍÃüÔ˾ö¶¨ÊÇÈçºÎÊܵ½°üÀ¨È¾É«ÖÊÈýά½á¹¹¡¢×éµ°°×ÐÞÊμ°×ªÂ¼Òò×ӵĶàά±í¹Û»úÖÆÕûºÏµ÷¿ØµÄ£¬ÔòÉÐδ¿ÉÖª¡£
ΪÁË̽¾¿²¸È鶯ÎïÅßÌ¥Öжàά±í¹ÛÒÅ´«²ã¼¶ÈçºÎµ÷¿ØHSC·¢ÉúÕâÒ»¿ÆÑ§ÎÊÌ⣬¸ÃÑо¿Í»ÆÆÁËÉÙÁ¿Ï¸°û¼ì²âµÄ¼¼ÊõÆ¿¾±£¬Ó¦ÓÃÉÙÁ¿Ï¸°ûsisHi-C£¨small-scale in situ Hi-C£©¼¼Êõ3ºÍºÎ°®±òÍŶÓÓÚ2019Ä꿪·¢µÄÉÙÁ¿Ï¸°ûitChIp-seq£¨indexing and tagmentation-based chromatinimmunoprecipitation sequencing£©¼¼Êõ4£¬·Ö±ðÔÚÊý°Ù¸öϸ°ûÖУ¬¼ì²âȾɫÖÊ»¥×÷½á¹¹¡¢×éµ°°×ÐÞÊμ°×ªÂ¼Òò×Ó½áºÏͼÆ×¡£×÷Õß´ÓСÊóÅßÌ¥µÄÖ÷¶¯Âö-ÐÔÏÙ-ÖÐÉöÇøºÍÌ¥¸ÎÖзֱðÊÕ¼¯ÁËHSC·¢Óý·¾¶ÉÏÏàÁÚµÄËÄÖÖϸ°ûÀàÐÍ£ºeAEC¡¢HEC¡¢pre-HSCÒÔ¼°LT-HSC£¨Í¼1£©¡£½áºÏÍŶӽüÆÚ·¢±íµÄµ¥Ï¸°ûת¼×éÊý¾Ý1, 2£¬ÒÔ´ó·¶Î§µ½Ð¡·¶Î§µÄ²»Í¬²ã¼¶È¾É«Öʿռä½á¹¹·¢Óý±ä»¯ÎªÖ÷Ïߣ¬½øÐÐHSCÆðÔ´µÄ¶àά±í¹ÛÒÅ´«µ÷¿Ø»úÖÆ½âÎö¡£
ͼ1.ϸ°ûÑùƷʾÒâͼ¼°¶àά±í¹Ûµ÷¿Ø¼ì²â
´Ù½øÔìѪ·¢ÉúµÄȾɫÖÊ»¥×÷±ä»¯·¢ÉúÔÚÍØÆË½á¹¹Óò£¨topologically associated domain, TAD£©ÄÚ²¿¡£ÔÚ´ó³ß¶ÈµÄȾɫÖÊÇøÊҲ㼶£¨100 Mbp£©£¬»ùÒò×é±»»®·ÖΪת¼»îÔ¾ÐԸߵÄAÀàÇøÊÒºÍת¼»îÔ¾ÐԵ͵ÄBÀàÇøÊÒ¡£½öÓÐÔ¼10.78%µÄ»ùÒò×éÇøÓò´æÔÚÈÎÁ½¸öʱÆÚÖ®¼äµÄA/BÀàÇøÊÒ»¥»»µÄÏÖÏó¡£TADΪȾɫÖÊÇøÊÒµÄÏÂÒ»¼¶½á¹¹£¬Æä±ß½ç¸»¼¯ÁËH3K4me3Ðźţ¬´æÔÚ×è¸ôÇ¿¶ÈµÄ¶¯Ì¬±ä»¯£¬µ«²¢Î´Ö±½ÓÓ°ÏìTAD±ß½ç¸½½ü»ùÒòµÄ±í´ï¡£¶ø½øÒ»²½Ì½¾¿·¢ÏÖ£¬TADÄÚ²¿µÄµ÷¿ØÔª¼þ»¥×÷¼°°éËæµÄ×éµ°°×ÐÞÊα仯£¬Ö±½ÓÓëÔìѪ·¢Óý½ø³ÌÏà¹Ø¡£
HSCÌØÒìµÄÔöÇ¿×ÓÔÚeAECÖÐÒѾ´¦ÓÚÒ»¶¨³Ì¶ÈµÄ¼¤»î״̬¡£ÓëÒÔÍùµÄ´ÓÎÞµ½ÓеÄÔöÇ¿×Ó¼¤»îÈÏÖª²»Í¬µÄÊÇ£¬ÔÚEHT³õÆÚµÄeAECÖУ¬ÔìѪ¹ý³ÌÏà¹ØTADÖеÄÔöÇ¿×ÓÒѾÏÔÖø¸»¼¯¼¤»îÐÔ×éµ°°×ÐÞÊΣ¨H3K27acºÍH3K4me1£©¡£´ÓeAEC¾¹ýHEC£¬µ½pre-HSC£¬ÔöÇ¿×ӵĻîÐÔÐźŲ¢Ã»Óб仯£¬½öÔÚpre-HSCÖÁLT-HSCÕâÒ»½×¶Î²Å½øÒ»²½ÔöÇ¿¡£ÕâÌáʾÔÚeAECÖУ¬ÒѾ³õ²½×¼±¸ºÃÁËÔìѪ·¢ÉúµÄÏà¹ØÈ¾É«ÖÊÐÞÊλù´¡£¬µ«ÐèҪȾɫÖÊ»¥×÷½á¹¹¼°×ªÂ¼Òò×ӵĽáºÏ£¬Çý¶¯´Ù½øHSC²úÉú£¨Í¼2£©¡£
ȾɫÖÊ»¥×÷ÔÚÔçÆÚ±ä»¯×îÏÔÖø¡£EHT³õÆÚ£¨eAEC-HEC£©£¬TADÄÚ²¿È¾É«ÖÊ»¥×÷´ó·ù¶È±ä»¯£¬ÔìѪÏà¹Ø»ùÒòËùÔÚÇøÓòµÄ»¥×÷ÏÔÖøÔöÇ¿¡£ÔÚEHTÄ©ÆÚpre-HSCµ½LT-HSCת±äÖУ¬TADÄÚ»¥×÷Ö»ÊÇС·ù¶ÈÔöÇ¿£¬µ«±ê¼Ç»îÐÔÔöÇ¿×ÓµÄ×éµ°°×ÐÞÊÎH3K27acÔòÒ»¶¨³Ì¶ÈÏÔÖøÌáÉý¡£Õû¸ö¹ý³ÌÖУ¬ÏàÓ¦µÄÒÖÖÆÐÔ×éµ°°×ÐÞÊÎH3K27me3Öð²½¼õÈõ£¬ÎªÔìѪ·¢Éú´´Ôì»îԾȾɫÖÊ»·¾³£¨Í¼2£©¡£
ͼ2. HSC·¢ÉúµÄ¶àά±í¹ÛÒÅ´«²ã¼¶µ÷¿ØÊ¾Òâͼ
ÁîÈËÒâÍâµÄÊÇ·¢ÏÖÔçÔÚeAECʱÆÚ£¬RUNX1µ°°×ÒѸ»¼¯½áºÏÓÚÔöÇ¿×Ó-Æô¶¯×Ó£¨E-p£©»¥×÷µÄêµãÇøÓò¡£RUNX1 ÊÇÒ»¸öÖØÒªÔìѪ·¢ÓýÏà¹Ø×ªÂ¼Òò×Ó5£¬Ò»°ãÈÏΪËüΪÇý¶¯HSCµÄ·¢ÉúËù±ØÐ룬Æä±í´ïʱ¼äÓëHSCÒ»Ö£¬ËüµÄȱʧ»áÔì³ÉÅßÌ¥ÔìѪÒì³£»òÖÂËÀ6, 7¡£ÊÜÏÞÓÚ¼ì²â¼¼Êõ¶Ôϸ°ûÊýÄ¿µÄÒªÇ󣬺ܶàÒÑÓÐÑо¿Ö»ÄÜʹÓÃÌåÍâ·Ö»¯ÑùÆ·»òϸ°ûϵ½øÐÐRUNX1µÄChIp-seqʵÑé8, 9,10£¬ÒÔ̽¾¿RUNX1ÈçºÎµ÷¿ØHSCϸ°ûÃüÔË¡£ÀûÓÃпª·¢µÄ¸ßÁéÃô¶ÈitChIp-seq¼¼Êõ£¬¸ÃÑо¿ÒÔ100-500¸ö·Öѡϸ°ûΪÆðʼÑùÆ·£¬¼ì²âÁËeAEC¡¢HEC¡¢pre-HSCºÍLT-HSCµÄRUNX1È«»ùÒò×é½áºÏͼÆ×¡£Ñо¿·¢ÏÖ£¬HSC·¢Éú¹ý³ÌÖУ¬RUNX1²ÎÓëÁËÔ¼40.9%µÄE-p»¥×÷¡£ÆäÖУ¬»¥×÷Ç¿¶ÈÔÝʱ»ò³ÖÐøÉÏÉýµÄE-p»¥×÷ÓëÔìѪ¼°ÃâÒß¹ý³ÌÏÔÖøÏà¹Ø£¨Í¼3£©¡£»ùÓÚRUNX1½áºÏ»¥×÷µÄÆô¶¯×Ó¼°ÔöÇ¿×ÓÇøÓò£¬¸ÃÑо¿Ô¤²â³öÓëRUNX1Ðͬµ÷¿ØÈ¾É«ÖÊ»¥×÷µÄÆäËüת¼Òò×Ó£¬ÈçGFI1b¡¢pU.1¡¢IRF¼Ò×åµ°°×¡¢SMAD¼Ò×åµ°°×µÈ¡£¸ÃÔ¤²â½á¹ûΪRUNX1ÐͬÆäËüת¼Òò×Ó¹²Í¬µ÷¿ØEHTµÄ»úÖÆÌ½¾¿ÌṩÁËָʾ·½Ïò¡£
ͼ3. RUNX1²ÎÓëÔöÇ¿×Ó-Æô¶¯×Ó(E-p)»¥×÷¼°µ÷¿ØÏà¹ØÉúÎïѧ¹ý³Ì
¼ò¶øÑÔÖ®£¬¸ÃÑо¿Í»ÆÆÁËÌåÄÚÑùƷϸ°ûÊýÄ¿ÏÞÖÆµÄ¼¼ÊõÆ¿¾±£¬ÕûºÏÁ˶à²ã¼¶È¾É«Öʽṹ¡¢²»Í¬×éµ°°×ÐÞÊμ°×ªÂ¼Òò×ÓRUNX1µÄ¶à×éѧÊý¾Ý£¬½ÒʾÁËHSCÆðÔ´µÄ±í¹ÛÒÅ´«²ã¼¶µ÷¿ØÐ»úÖÆ¡£
ºÎ°®±ò½ÌÊÚ¡¢Áõ±øÑо¿Ô±£¨½â·Å¾ü×ÜÒ½ÔºµÚÎåҽѧÖÐÐÄ£©¡¢À¼ÓêÑо¿Ô±£¨ôßÄÏ´óѧ£©Îª±¾ÎĹ²Í¬Í¨Ñ¶×÷Õß¡£±±¾©´óѧ·Ö×ÓҽѧÑо¿Ëù²©Ê¿À¡¢¾üÊ¿ÆÑ§Ôº²©Ê¿ÉúÕŹãÓêΪÂÛÎĹ²Í¬µÚÒ»×÷Õߣ¬¸ÐлÇ廪´óѧò¡Î°½ÌÊÚ¶ÔsisHi-C¼¼ÊõµÄ·ÖÏí¡£¸ÃÑо¿»ñµÃÁ˿Ƽ¼²¿¸Éϸ°ûרÏî¡¢¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðί¡¢¹ã¶«Ê¡ÖصãÑо¿¿ª·¢ÏîÄ¿¡¢ÉúÃü¿ÆÑ§ÁªºÏÖÐÐÄ¡¢±±¾©´óѧ¸ßÐÔÄܼÆËãÖÐÐĺÍÉúÃü¿ÆÑ§Ñ§Ôº·ï»Ëƽ̨µÄ´óÁ¦Ö§³Ö¡£
ÔÎÄÁ´½Ó£º
https://www.nature.com/articles/s41467-022-28018-z
²Î¿¼ÎÄÏ×£º
1. Hou S, et al. Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses. Cell Res 30, 376-392 (2020).
2. Zhou F, et al. Tracing haematopoietic stem cell formation at single-cell resolution. Nature 533, 487-492 (2016).
3. Du Z, et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232-235(2017).
4. AiS, et al. profiling chromatin statesusing single-cell itChIp-seq. Nat CellBiol 21, 1164-1172 (2019).
5. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887-891 (2009).
6. Lacaud G, et al. Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood 100, 458-466 (2002).
7. YokomizoT, et al. Runx1 is involved inprimitive erythropoiesis in the mouse. Blood 111, 4075-4080 (2008).
8. Wilson NK, et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis often major transcriptional regulators. CellStem Cell 7, 532-544 (2010).
9. Gilmour J, Assi SA, Noailles L, Lichtinger M, Obier N, Bonifer C. The Co-operation of RUNX1 with LDB1, CDK9 and BRD4 Drives Transcription Factor Complex Relocation During Haematopoietic Specification. Sci Rep 8, 10410 (2018).
10. Nottingham WT, et al. Runx1-mediatedhematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood 110, 4188-4197 (2007).