ÃÞ»¨ÒÅ´«¸ÄÁ¼ÍŶӽâÎöÃÞ»¨ÏËÎ¬ËØºÏø½á¹¹
ÄϺþÐÂÎÅÍøÑ¶£¨Í¨Ñ¶Ô± ÕÅÏåÄÏ£©½üÈÕ£¬×÷ÎïÒÅ´«¸ÄÁ¼¹ú¼ÒÖØµãʵÑéÊÒÃÞ»¨ÒÅ´«¸ÄÁ¼ÍŶӺ͵°°×ÖÊ¿ÆÑ§Ñо¿ÍŶӺÏ×÷½âÎöÁËÃÞ»¨ÏËÎ¬ËØºÏø£¨GhCesA7£©µÄ½á¹¹£¬ÔÚÏà¹ØÁìÓò»ñµÃÖØ´óÍ»ÆÆ¡£¸ÃÑо¿ÀûÓò¸È鶯Îï±í´ïÌåϵºÍÀä¶³µç¾µ¼¼Êõ½âÎöÁËGhCesA7µÄͬԴÈý¾ÛÌå½á¹¹£¬²¢·¢ÏÖÁËÈý¾ÛÌåµÄ¹¹ÏóÖ÷ÒªÓÉTM7ºÍpCR½á¹¹ÓòÎȶ¨£¬Í¬Ê±Ò²Í¨¹ýÌåÍâÍ¬Î»ËØ±ê¼Ç·½·¨Ö¤Ã÷ÁËGhCesA7µÄÌåÍâ»îÐÔ£¬½ÒʾÁËGhCesA7ºÏ³ÉÌÇÁ´µÄ·Ö×Ó»úÀí¡£
ÏËÎ¬ËØÊÇÓÉβ-1,4-ÆÏ¾ÛÌǹ¹³ÉµÄ¶àÌǾۺÏÎÊǵØÇòÉÏ×î¹ÅÀÏ¡¢×î·á¸»µÄÌìÈ»¸ß·Ö×Ó£¬ÈËÀà×¹óµÄ¿ÉÔÙÉú×ÊÔ´¡£ÏËÎ¬ËØÒ²ÊÇÖ²Îïϸ°û±ÚÖ÷Òª³É·Ö£¬Õ¼Ö²Îï½ç̼º¬Á¿µÄ50%ÒÔÉÏ¡£ÃÞÏËάÊÇ×îÖ÷ÒªµÄÌìÈ»·ÄÖ¯ÔÁÏ£¬ÔÚÃÞ»¨ÏËά´ÎÉú±ÚÖÐÏËÎ¬ËØº¬Á¿¿É´ï90%ÒÔÉÏ¡£¸ßµÈÖ²Îïϸ°û±ÚÖеÄÏËÎ¬ËØÊÇÓɶ¨Î»ÔÚÖÊĤÉϵÄÏËÎ¬ËØºÏø£¨cellulose synthase, CesA£©ºÏ³É¡£ÏËÎ¬ËØºÏøÊÇÒ»¸ö´óµÄ¶àÑÇ»ù¸´ºÏÌ壬´Ó½á¹¹ÉúÎïѧµÄ½Ç¶ÈÉîÈë̽¾¿ÃÞ»¨ÏËÎ¬ËØºÏøµÄ½á¹¹¼°ºÏ³ÉÏËÎ¬ËØµÄ»úÖÆ£¬ÓÐÖúÓÚÀí½âÃÞ»¨ÏËά´ÎÉú±Ú³Á»ý½ø³Ì£¬Éè¼ÆÓýÖÖ¸ÄÁ¼ÏËάƷÖÊ¡£Ñо¿Õß˵£º“½âÎöÏËÎ¬ËØºÏø½á¹¹£¬½ø¶øÓÅ»¯ÏËάºÏø»îÐÔ£¬¿ÉÌá¸ßÉúÎïÖÊÄÜÔ´ÔÙÉúЧÂÊ¡£”
ÏËÎ¬ËØºÏø£¨CesA£©ÊôÓÚGT-2£¨Glycosyltransferase Family 2£©ÐÍÌÇ»ù×ªÒÆÃ¸£¬ÆäÔڸߵÈÖ²ÎïºÍÉÙÁ¿Ï¸¾úÈçºìϸ¾úÖж¼Óзֲ¼¡£Ï¸¾úÖеÄÏËÎ¬ËØºÏø£¨Bacteria Cellulose Synthase, Bcs£©µÄ½á¹¹ÔÚ֮ǰµÄÑо¿ÖÐÒѾ±¨µÀ£¬Æä»úÀíÒ²Ïà¶Ô±È½ÏÇå³þ¡£È»¶ø¸ßµÈÖ²ÎïÖÐÖ»ÓÐÑîÊ÷µÄCesA½á¹¹Óб¨µÀ¡£
ÕâÏîÑо¿»ùÓÚÃÞ»¨ÒÅ´«¸ÄÁ¼ÍŶӻæÖƵĺ£µºÃ޺ͽµØÃ޵IJο¼»ùÒò×飨Nature Genetics, 2019£©£¬»ñµÃÁËÈ«²¿34¸öCesAsµÄÐòÁм°±í´ïÐÅÏ¢£¬²¢½øÐÐÃÜÂë×ÓÓÅ»¯£¬½øÐв¸È鶯Îï±í´ïÌåϵ±í´ïɸѡ£¬ »ñµÃÁËGhCesA7µ°°×²¢³É¹¦½âÎöÁËËüͬԴÈý¾ÛÌåµÄ½á¹¹¡£·¢ÏÖTM7ºÍpCRÎȶ¨Èý¾ÛÌå¹¹ÏóµÄ¹Ø¼ü½á¹¹Óò£¬¶øÖ®Ç°»ùÓÚÉúÎïÐÅÏ¢Ô¤²âµÄ8´Î¿çĤ½á¹¹Óòʵ¼ÊÉÏÔڽṹÖÐÖ»ÓÐ7´Î¿çĤ£¬Ô¤²âµÄ¿çĤ½á¹¹Óò5£¨TM5£©Êµ¼ÊÉÏÊÇÒ»¶ÎInterface Helix£¨IF3£©¡£Èý¾ÛÌåµÄÿ¸öµ¥ÌåÀï¶¼ÊÇ¿ÉÒÔ¿´µ½Ò»¶ÎÌÇÁ´µÄ¡£½øÒ»²½ºÍϸ¾úµÄBcsA-BcsB¸´ºÏÌå¶Ô±È·¢ÏÖһЩ¶Ô»îÐÔÓ°ÏìºÜ´óµÄ°±»ùËáÈçÌ춬°±Ëá¡¢¹È°±õ£°·¡¢É«°±ËáµÈÔÚÕæºËºÍÔºËÉúÎïÀï¶¼ºÜ±£ÊØ¡£
ÏËÎ¬ËØºÏø»îÐÔʵÑéÖУ¬Í¨¹ýÍ»±äµÚ540λÌ춬°±Ëá¡¢µÚ742ΪÌ춬°±Ëá¡¢µÚ784λɫ°±Ëá»áµ¼ÖÂCesA»îÐÔµÄÃ÷ÏÔ½µµÍ¡£ÌåÍâ±í´ïCesAÒÔͬԴÈý¾ÛÌåµÄÐÎʽ´æÔÚ£¬µ«ÌåÄÚÓпÉÄÜÒÔÒìÔ´Èý¾ÛÌåµÄÐÎʽ¸ºÔðÏËÎ¬ËØµÄºÏ³É¡£ÕâÏîÑо¿½âÎöÁËÃÞ»¨ÖÐÏËÎ¬ËØºÏøµÄ½á¹¹£¬Îª½øÒ»²½½âÎöCesAÒìÔ´¶à¾ÛÌåµÄ×é×°¼°³¬¼¶¸´ºÏÌåµÄ½á¹¹´òÏÂÁËÔúʵµÄ»ù´¡¡£
ÉóºËÈË£ºÍ¿ÀñÀò
¡¾Ó¢ÎÄÕªÒª¡¿
Cellulose is one of the most abundant organic polymers in nature. It contains multiple β©\1,4©\glucan chains synthesized by cellulose synthases (CesAs) on the plasma membrane of higher plants. CesA subunits assemble into a pseudo©\6©\fold symmetric cellulose synthase complex (CSC), known as a ‘rosette complex’. The structure of CesA remains enigmatic. Here we report the cryo©\EM structure of the homotrimeric CesA7 from Gossypium hirsutum at 3.5©\angstrom resolution. The GhCesA7 homotrimer shows a C3 symmetrical assembly. Each protomer contains seven transmembrane helices (TMs) which form a channel potentially facilitating the release of newly synthesized glucans. The cytoplasmic glycosyltransferase domain (GT domain) of GhCesA7 protrudes from the membrane, and its catalytic pocket is directed towards the TM pore. The homotrimer GhCesA7 is stabilized by the transmembrane helix 7 (TM7) and the plant conserved region (pCR) domains. It represents the building block of CSCs and facilitates microfibril formation. This structure provides insight into how eukaryotic cellulose synthase assembles and provides a mechanistic basis for the improvement of cotton fiber quality in the future.
ÂÛÎÄÁ´½Ó£ºhttps://onlinelibrary.wiley.com/doi/abs/10.1111/pbi.13571